The Solution Path of the Generalized Lasso
نویسندگان
چکیده
We present a path algorithm for the generalized lasso problem. This problem penalizes the `1 norm of a matrix D times the coefficient vector, and has a wide range of applications, dictated by the choice of D. Our algorithm is based on solving the dual of the generalized lasso, which facilitates computation and conceptual understanding of the path. For D = I (the usual lasso), we draw a connection between our approach and the well-known LARS algorithm. For an arbitrary D, we derive an unbiased estimate of the degrees of freedom of the generalized lasso fit. This estimate turns out to be quite intuitive in many applications.
منابع مشابه
On the Complexity of the Weighted Fussed Lasso
The solution path of the 1D fused lasso for an ndimensional input is piecewise linear with O(n) segments [1], [2]. However, existing proofs of this bound do not hold for the weighted fused lasso. At the same time, results for the generalized lasso, of which the weighted fused lasso is a special case, allow Ω(3) segments [3]. In this paper, we prove that the number of segments in the solution pa...
متن کاملAn ordinary differential equation based solution path algorithm.
Efron, Hastie, Johnstone and Tibshirani (2004) proposed Least Angle Regression (LAR), a solution path algorithm for the least squares regression. They pointed out that a slight modification of the LAR gives the LASSO (Tibshirani, 1996) solution path. However it is largely unknown how to extend this solution path algorithm to models beyond the least squares regression. In this work, we propose a...
متن کاملIntroduction to the genlasso package
We present a short tutorial and introduction to using the R package genlasso, which is used for computing the solution path of the generalized lasso problem discussed in Tibshirani and Taylor (2011). Use cases of the generalized lasso include the fused lasso over an arbitrary graph, and trend fitting of any given polynomial order. Our implementation includes a function to solve the generalized ...
متن کاملEfficient Implementations of the Generalized Lasso Dual Path Algorithm
The generalized lasso problem penalizes the `1 norm of a matrix D times the coefficient vector to be modeled, and has a wide range of applications, dictated by the choice of D. Special cases include the trend filtering and fused lasso problem classes. We consider in this talk highly efficient implementations of the generalized lasso dual path algorithm of Tibshirani and Taylor [1]. This covers ...
متن کاملElastic Net for Cox's Proportional Hazards Model with a Solution Path Algorithm.
For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we ex...
متن کامل